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Abstract. We analyse the electrical conductanceG(φ) of a two-dimensional, phase-coherent
structure in contact with two superconductors, which is known to be an oscillatory function
of the phase differenceφ between the superconductors. It is predicted that for a ballistic
sample, the amplitude of oscillation will be enhanced by placing a normal barrier at the normal–
superconducting interface, and that by tuning the strength of the barrier, it can be made orders
of magnitude greater than values observed in recent experiments. Giant oscillations can also be
obtained without a barrier, provided that a crucial sum rule is broken. This can be achieved by
disorder-induced normal scattering. In the absence of zero-phase inter-channel scattering, the
conductance possesses a zero-phase minimum and a maximum atφ = π .

Andreev interferometers are a recently discovered paradigm of phase-coherent transport
in mesoscopic superconducting structures. When a quasi-particle Andreev reflects from
a normal–superconducting (N–S) interface, the phase of the outgoing excitation is shifted
by the phase of the superconducting order parameter [1]. Consequently if a phase-coherent
normal conductor is in contact with two superconductors with order parameter phasesφ1, φ2,
transport properties will be oscillatory functions of the phase differenceφ = φ1−φ2. Several
realizations of such Andreev interferometers are now available in the laboratory and for
those in which disorder plays a dominant role [2–6], currently available theories [7–14]
can be used to describe the observed generic features. In contrast, for systems such as a
clean two-dimensional electron gas, smaller than the elastic mean free path [15], there is
currently no quantitative theory which accounts for the intrinsic two-dimensional nature of
such structures.

The aim of this letter is to develop a description of the clean limit which is capable
of addressing questions such as those of the nature of the zero-phase extremum inG(φ)

and the amplitude of oscillation. In some experiments [3, 4, 6] the amplitude is found
to be several orders of magnitude smaller than 2e2/h, but in others [2, 5] it is a few
multiples of 2e2/h. In what follows we predict that certain structures are capable of giant
oscillations, with amplitudes many orders of magnitude greater than 2e2/h. Remarkably,
the amplitude vanishes for very clean samples, and so to obtain a large effect, a degree of
normal scattering must be introduced, in order that an approximate sum rule is broken. This
occurs, for example, when a Schottky barrier is present at a clean N–S interface.

For simplicity we consider the zero-temperature limit, where the electrical conductance
between two normal reservoirs can be written [9, 16] (in units of 2e2/h) as

G = T0 + Ta + 2(RaR
′
a − TaT

′
a)

Ra + R′
a + Ta + T ′

a

. (1)
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In this expression,R0, T0 (Ra, Ta) are the coefficients for normal (Andreev) reflection and
transmission for zero-energy quasi-particles from reservoir 1, whileR′

0, T
′

0 (R′
a, T

′
a) are

the corresponding coefficients for quasi-particles from reservoir 2. If each of the external
leads connecting the reservoirs to the scatterer containsN open channels, these satisfy
R0 + T0 + Ra + Ta = R′

0 + T ′
0 + R′

a + T ′
a = N and T0 + Ta = T ′

0 + T ′
a. Furthermore, in

the absence of a magnetic field, all reflection coefficients are even functions ofφ, while the
transmission coefficients satisfyT ′

0(φ) = T0(−φ), T ′
a(φ) = Ta(−φ). Consequently on quite

general grounds, in the absence of a field,G is predicted to be an even function ofφ.
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Figure 1. Three possible interferometers, each with two superconducting regions of widthM ′′.
In (a) and (b), the superconductors are separated by a distanceM and in (c) by a distance
3M. The scattering region is connected to normal, external current-carrying leads, of width
M + 2M ′′ in (a), and of widthM in (b) and (c). In (a) and (b), a normal barrier (shown black)
is placed at the N–S interface. The current flows from left to right between external reservoirs
with potentialsµ1 and µ2. In the tight-binding model used in the numerical simulations, the
barrier comprises a line of sites with diagonal elementsεi = εb.

Figure 1 shows three examples of interferometers, for which results are presented below.
Each has two superconducting regions with definite phasesφ1 and φ2, in contact with a
normal region (shown shaded). In each case the scattering region is connected to normal,
external current-carrying leads, withN conducting channels. In figures 1(a) and 1(b), a
normal barrier (shown black) is placed at the N–S interface. In what follows we first
show numerical results obtained from a two-dimensional, tight-binding model on a square
lattice, with diagonal elementsεi and nearest-neighbour hopping elements of magnitude
unity. In the external leads we chooseεi = 0, yielding a Fermi energy ofEF = 4, equal
to half the band width. In the single line of sites forming the barrier,εi = εb, and in the
superconductors, where the order parameter magnitude|1| 6= 0, we chooseεi = 0. In a
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Figure 2. Numerical results for the conductanceG of the structure of figure 1(a), with
M = 45, M ′ = 50, M ′′ = 15, and number of open channelsN = 45. Results are shown
for |1 = 0.1| and barrier potentialsεb = 0, 1, 2, 3. The number adjacent to a given curve is the
corresponding value ofεb.
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Figure 3. Results for the conductanceG of the structure of figure 1(b) (solid line: left-hand
scale) withM = M ′ = M ′′ = 10, W = 0, and that of figure 1(c) (dashed line: right-hand scale)
with M = M ′ = M ′′ = 10, W = 0. N = 10 and|1| = 0.2 in both cases. For the structure of
figure 1(b) results are shown for a barrier potentialεb = 2.

disordered region of the sample,εi is chosen to be a random number uniformly distributed
over the interval±W , whereas for a clean system,W = 0. As discussed in [16], the
conductance is obtained by first evaluating the quantum mechanical scattering matrix and
then evaluating the zero-temperature conductance formula (1). The transfer matrix codes
used [16] are extremely versatile and can be used to analyse arbitrary geometries, with
multiple contacts.

For the structure of figure 1(a), figure 2 shows numerical results for giant oscillations
in the electrical conductanceG(φ). In the absence of a barrier(εb = 0), the amplitude of
oscillation (in units of 2e2/h) is negligible compared with unity, whereas forεb = 1, 2, 3
a large-amplitude oscillation is present. As the barrier strengthεb increases, the amplitude
of oscillation initially increases to a value of orderNe2/h, before decreasing in proportion
to the zero-phase conductance.

These results show that at intermediate barrier strengths, the relative amplitude as well
as the absolute amplitude is optimized. Figure 3 shows results for the phase-periodic
conductance of the structures of figure 1(b) (solid line) and figure 1(c) (dashed line). For the
structure of figure 1(b) we have presented results in figure 3 for the most favourable barrier
strength, in the absence of disorder. Introducing normal disorder or changing the barrier
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strength decreases the amplitude of oscillation. In the case of the structure of figure 1(c)
there is no barrier, but a disorder comparable to that in the experiments of reference [5] has
been used. We have examined the structures in figures 1(b) and 1(c) for a variety of barrier
strengths and disorders, respectively, and in no case have we found an amplitude which is
more than a few per cent of 2e2/h.
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Figure 4. (a) Numerical results for the diagonal Andreev reflection coefficients(Ra)ii for the
structure of figure 1(a), withM = 45, M ′ = 50, M ′′ = 15, N = 45, and no barrier present
(εb = 0). (b) Corresponding results for the off-diagonal coefficients(Ra)ij with i 6= j .

We now develop an analytic, multiple-scattering description of a clean N–S interface,
which emphasizes the crucial role of normal scattering in optimizing this effect and which
captures the essential physics of interferometers. Consider first an idealization of the
structure of figure 1(a), in which the distanceM between the superconductors vanishes
and therefore for a long enough sample there is no quasi-particle transmission. In this limit
the total resistance reduces to a sum of two measureable boundary resistances, and in what
follows, we therefore focus attention on the left-hand boundary conductance [9, 17]:

GB(φ) = 2Ra = 2 Tr rar
†
a =

N∑
i,j=1

(Ra)ij (2)

where(Ra)ij = |(ra)ij |2 is the Andreev probability of reflection from channelj to channel
i. As in equation (1), the Andreev reflection coefficient is of the formRa = Rdiag+Roff−diag

whereRdiag = ∑N
i=1(Ra)ii and Roff−diag is the remaining contribution from inter-channel

scattering,Roff−diag = ∑N
i 6=j=1(Ra)ij .

In the absence of disorder, forM = 0 andφ = 0, translational symmetry in the direction
transverse to the current flow guarantees thatRoff−diag = 0. For the system of figure 1(a),
with no barrier, no disorder andM = 45, figure 4(b) shows the behaviour of the coefficients
(Ra)ij for i 6= j and demonstrates that even for finiteM, off-diagonal scattering atφ = 0
is negligible. This figure leads us to a second observation, namely that even for non-zero
φ, almost all of the off-diagonal coefficients are negligibly small, and that a given channel
i couples strongly to at most one other channelj . Consequently in the absence of disorder,
a multiple-scattering description involving pairs of channels captures the essential physics.
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Consider a normal barrier to the left of a N–S interface. Particles (holes) impinging on
the normal scatterer are described by a scattering matrixspp (shh), and those arriving at the
N–S interface are described by a reflection matrixρ, where

spp =
(

rpp t ′pp

tpp r ′
pp

)
ρ =

(
ρpp ρph

ρhp ρhh

)
.

The elements ofs and ρ are themselves matrices describing scattering between open
channels of the external leads. For an ideal interface, where Andreev’s approximation
is valid [1], ρpp and ρhh are negligible and in what follows will be set to zero. As
a consequence,ρhp and ρph are unitary and one obtains [18]ra = t ′hhρhpM−1

pp tpp, with
Mpp = 1 − r ′

ppρphr
′
hhρhp. In contrast with the analysis of [18], whereρhp is proportional

to the unit matrix, the interference effect of interest here is contained in the fact thatρhp

induces off-diagonal scattering. Substitutingra into equation (2) and taking advantage of
particle–hole symmetry atE = 0 yields

G = 2 Tr(T Q−1T (Q†)−1) (3)

whereQ = ρ t
ph + (r ′)ppρph(r

′)†pp, with T = tppt
†
pp the transmission matrix of the normal-

scattering region. This multiple-scattering formula for the boundary conductance is valid in
the presence of an arbitrary number of channels and in any dimension. Notice that ifT is
equal to the unit matrix, thenQ = ρ t

ph and thereforeG = 2N , irrespective of the phase-
periodic nature ofρph. This demonstrates that at a clean interface, whatever the phase,
the approximate unitarity ofρph yields the sum ruleRdiag + Roff−diag = N and therefore
the conductance is independent ofφ. More generally, whenever normal reflection (R0) and
Andreev transmission (Ta) are negligibly small, unitarity imposes the sum ruleT0+Ra = N ,
and since in this limit equation (1) reduces toG = T0 + Ra, the amplitude of oscillation
must vanish.

Equation (3) is very general and makes no assumption about the nature of matricesρph

andspp. We now introduce a two-channel model in whichρph is chosen to be an arbitrary
two-dimensional unitary matrix. In the absence of disorder,tpp and rpp are diagonal and
therefore the only interchannel coupling is provided byρph. Substituting these matrices into
equation (3) yields an expression forra involving a single phaseθ , whose value is a linear
combination of phase shifts due to normal reflection at the barrier, Andreev reflection at the
N–S interface, and the phase accumulated by an excitation travelling from the barrier to the
interface. The result for the sum of the diagonal elements is

Rdia(φ, θ) = (Ra)11 + (Ra)22 = cA

(cC + s(D − E cosθ))2
(4)

and for the sum of the off-diagonal elements

Roff−diag(φ, θ) = (Ra)12 + (Ra)21 = sB(D − E cosθ)

(cC + s(D − E cosθ))2
(5)

whereA = T 2
1 (1+R2)

2+T 2
2 (1+R1)

2, B = 2T1T2, C = (1+R1)(1+R2), D = 1+R1R2, E =
2
√

R1R2, R1 = 1 − T1, R2 = 1 − T2, c = cos2 φ/2, ands = sin2 φ/2. After averaging over
the rapidly varying phaseθ , this yields

Rdia(φ) = cA
cC + sD

((cC + sD)2 − s2E2)3/2
Roff−diag(φ) = sB

cCD + s(D2 − E2)

((cC + sD)2 − s2E2)3/2
.

(6)

For a given value ofφ, once the normal-barrier-transmission coefficientsT1 andT2 of the
two channels are chosen, the right-hand sides of equations (6) are completely determined.
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Figure 5. (a) Numerical results for the diagonal Andreev reflection coefficients(Ra)ii of the
structure of figure 1(a), withM = 45, M ′ = 50, M ′′ = 15, N = 45, and barrier potentialεb = 2.
(b) Corresponding results for the off-diagonal coefficients(Ra)ij with i 6= j . (c), (d) Analytical
results from a two-channel calculation. The insets in the top right-hand corners of (a) and (c)
show the corresponding conductances. The top left-hand inset of (a) shows plots ofG(φ)/G(0)

for the five valuesN = 35, 40, 45, 50, 55, 60.

In what follows, we compare analytic results forRdia(φ) andRoff−diag(φ) with numerical
results for(Ra)ij . For the structure of figure 1(a), figures 4(a) and 4(b) show numerical
results for the diagonal(Ra)ii and off-diagonal coefficients(Ra)ij (i 6= j) respectively.
Notice that at zero phase, most of the diagonal coefficients(Ra)ii are close to unity,
although a small number of orderN |1|/EF are suppressed, due to a breakdown of
Andreev’s approximation for low-angle scattering [19]. This slight breakdown of Andreev’s
approximation yields a small-amplitude oscillation even in the absence of normal potential
scattering, but as emphasized by figure 2, the fractional amplitude is negligible. Figures 5(a)
and 5(b) show corresponding results for the diagonal and off-diagonal coefficients in the
presence of a barrier. Atφ = 0, there is no coupling between the channels, and the
scattering properties are those ofN independent channels, each with a barrier transmission
coefficientTi . The spectrum of coefficients depends in detail on the shape of the barrier.
The top right-hand inset of figure 5(a) shows the boundary conductanceG(φ) obtained by
summing the curves in figures 5(a) and 5(b), as well as the contribution due to normal
transmission. Figures 5(c) and 5(d) show analytic results forRdia(φ) and Roff−diag(φ)
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obtained from equations (6) and (7) by choosing ten pairs of transmission coefficients
T1, T2, with T2 = 0.2T1. The inset of figure 5(c) shows the corresponding conductance
obtained by summing the curves in figures 5(c) and 5(d).

Clearly the qualitative features of the exact simulation are reproduced by this two-
channel analysis. Since the latter yields theN -channel conductance via a summing over
N/2 independent pairs of channels, the amplitude of the oscillation is predicted to scale
with the number of open channels. This is confirmed by the exact numerical results shown
in the top left-hand inset of figure 5(a), which shows plots ofG(φ)/G(0) for five values of
N ranging fromN = 35 to N = 60.

Figure 6. Numerical results obtained from a tight-binding model of the structure of figure 1(a),
but with the barrier replaced by a disordered region of length 30 sites. In these simulations,
M = 45, M ′ = 15, M ′′ = 50, N = 45, 10 = 0.1, and the disorder isW = 2.8. (a) and (b) show
diagonal and off-diagonal Andreev reflection coefficients, respectively.

Analytically we find that atφ = 0 andφ = π , in the absence of disorder, the second
derivative of the two-channel conductance satisfies d2G/dφ2 > 0, for all barrier strengths.
However, atφ = π , as shown in the inset of figure 5(c), the conductance is close to maximal,
with only a local, barely discernible minimum. The exact numerical results shown in the
insets of figure 5(a) reveal a zero-phase minimum, and a careful examination around the peak
value reveals a maximum atφ = π . From figure 4, it is clear that the nature of the extrema
is the result of competition between diagonal Andreev reflection coefficients, which exhibit
a zero-phase maximum and off-diagonal coefficients which possess a zero-phase minimum.
At φ = π , the latter dominate andG(π) is maximal. This contrasts with the predictions
of [9, 11–13], which for a spatially symmetric structure, in the presence of disorder, yield
G(π) = 0. To illustrate the qualitative changes occurring in the presence of disorder, figure 6
shows numerical results for the structure of figure 1(a), withM = 45, M ′ = 50, M ′′ = 15,
but with the barrier replaced by a disordered normal square of width 30 sites. This shows
that replacing the barrier by a disordered region causes the zero-phase extremum of the off-
diagonal coefficients to switch from a minimum to a maximum. Since the total conductance
is a sum of all curves in figure 6,G(0) switches to a maximum andG(π) to a minimum.
On the one hand, channels no longer couple in pairs and therefore a complete multi-channel
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scattering description is needed. On the other, off-diagonal and diagonal elements are no
longer out of phase and therefore theories describing average properties of a single channel,
such as the quasi-one-dimensional descriptions of [9, 11–13], become appropriate.

In summary, through exact solutions of the Bogoliubov–de Gennes equation, we have
demonstrated that giant oscillations are obtainable and can be observed by breaking a crucial
sum rule. It should be noted that the possibility of giant conductance oscillations in the
ballistic regime has also been pointed out in [20], using a geometry different from that
discussed here. The main differences are that in the geometry of [20], the phase difference
is along the longitudinal direction, interchannel scattering is absent, and the sum rule is
automatically broken by the presence of beam-splitters.

Remarkably, the structure of figure 1(c) shows only a small mesoscopic effect, with an
amplitude much smaller than that observed in the experiments of [5]. In a recent publication
[21] it was demonstrated that at finite voltages the amplitude of oscillation for this structure
is significantly enhanced and therefore by reducing the temperature or measuring voltage
in these experiments, we predict that the amplitude of oscillation will decrease. More
crucially, in the presence of a normal barrier at the interface, we predict that the structure
of figure 1(a) will be found to be more optimal, and that in metallic samples, with very
largeN , the amplitude of oscillation could become orders of magnitude larger than 2e2/h.

This work was supported by the EPSRC, the EC Human Capital and Mobility Programme,
NATO, the MOD and the Institute for Scientific Interchange (Torino). It has benefited from
useful conversations with V Petrashov, F Sols, and C W JBeenakker.
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